Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways.
نویسندگان
چکیده
During exponential phase, the tobacco (Nicotiana tabacum) cell line cv Virginia Bright Italia-0 divides axially to produce linear cell files of distinct polarity. This axial division is controlled by exogenous auxin. We used exponential tobacco cv Virginia Bright Italia-0 cells to dissect early auxin signaling, with cell division and cell elongation as physiological markers. Experiments with 1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated that these 2 auxin species affect cell division and cell elongation differentially; NAA stimulates cell elongation at concentrations that are much lower than those required to stimulate cell division. In contrast, 2,4-D promotes cell division but not cell elongation. Pertussis toxin, a blocker of heterotrimeric G-proteins, inhibits the stimulation of cell division by 2,4-D but does not affect cell elongation. Aluminum tetrafluoride, an activator of the G-proteins, can induce cell division at NAA concentrations that are not permissive for division and even in the absence of any exogenous auxin. The data are discussed in a model where the two different auxins activate two different pathways for the control of cell division and cell elongation.
منابع مشابه
Arabidopsis GLP4 is localized to the Golgi and binds auxin in vitro.
Hormones are critical for cell differentiation, elongation, and division. The plant hormone auxin plays vital roles in plant growth and development and is essential for various physiologic processes. Previous studies showed that germin-like proteins (GLPs) are involved in multiple physiologic and developmental processes and that several GLP members could bind different auxin molecules. Here we ...
متن کاملIn Plant Protoplasts, the Spontaneous Expression of Defense Reactions and the Responsiveness to Exogenous Elicitors Are under Auxin Control.
When auxin was omitted during either the preparation or the culture of tobacco mesophyll protoplasts, as well as during both periods, synthesis of beta-glucanase was spontaneously induced. In contrast, when protoplasts were prepared and cultured in the presence of 16 micromolar 1-naphthaleneacetic acid (optimal concentration for protoplast division), the expression of beta-glucanase was maintai...
متن کاملAuxin, actin and growth of the Arabidopsis thaliana primary root.
To understand how auxin regulates root growth, we quantified cell division and elemental elongation, and examined actin organization in the primary root of Arabidopsis thaliana. In treatments for 48 h that inhibited root elongation rate by 50%, we find that auxins and auxin-transport inhibitors can be divided into two classes based on their effects on cell division, elongation and actin organiz...
متن کاملNew auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery.
Plant growth depends on the integration of environmental cues and phytohormone-signaling pathways. During seedling emergence, elongation of the embryonic stem (hypocotyl) serves as a readout for light and hormone-dependent responses. We screened 10,000 chemicals provided exogenously to light-grown seedlings and identified 100 compounds that promote hypocotyl elongation. Notably, one subset of t...
متن کاملp-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root.
p-Chlorophenoxyisobutyric acid (PCIB) is known as a putative antiauxin and is widely used to inhibit auxin action, although the mechanism of PCIB-mediated inhibition of auxin action is not characterized very well at the molecular level. In the present work, we showed that PCIB inhibited BA::beta-glucuronidase (GUS) expression induced by indole-3-acetic acid (IAA), 2,4-dichlorophenoxyacetic acid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 137 3 شماره
صفحات -
تاریخ انتشار 2005